Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sci Total Environ ; : 160322, 2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2231829

ABSTRACT

Waste generated by healthcare facilities during the COVID-19 pandemic has become a new source of pollution, particularly with the widespread use of single-use personal protective equipment (PPE). Releasing microplastics (MPs) and microfibers (MFs) from discarded PPE becomes an emerging threat to environmental sustainability. MPs/MFs have recently been reported in a variety of aquatic and terrestrial ecosystems, including water, deep-sea sediments, air, and soil. As COVID-19 spreads, the use of plastic-made PPE in healthcare facilities has increased significantly worldwide, resulting in massive amounts of plastic waste entering the terrestrial and marine environments. High loads of MPs/MFs emitted into the environment due to excessive PPE consumption are easily consumed by aquatic organisms, disrupting the food chain, and potentially causing chronic health problems in humans. Thus, proper management of PPE waste is critical for ensuring a post-COVID sustainable environment, which has recently attracted the attention of the scientific community. The current study aims to review the global consumption and sustainable management of discarded PPE in the context of COVID-19. The severe impacts of PPE-emitted MPs/MFs on human health and other environmental segments are briefly addressed. Despite extensive research progress in the area, many questions about MP/MF contamination in the context of COVID-19 remain unanswered. Therefore, in response to the post-COVID environmental remediation concerns, future research directions and recommendations are highlighted considering the current MP/MF research progress from COVID-related PPE waste.

2.
Waste Manag ; 157: 159-167, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2184363

ABSTRACT

The demand for polypropylene (PP) melt-blown materials has dramatically increased due to the COVID-19 pandemic. It has caused serious environmental problems because of the lack of effective treatment for the waste PP melt-blown materials. In this study, we propose a green and sustainable recycling method to create PP sponges from waste PP melt-blown material for oil spill cleaning by freeze-drying and thermal treatment techniques. The recycling method is simple and without secondary pollution to the environment. The developed recycling method successfully transforms 2D laminar dispersed PP microfibers into elastic sponges with a 3D porous structure, providing the material with good mechanical properties and promotes its potential application in the field of oil spill cleaning. The morphology structure, thermal properties, mechanical properties, and oil absorption properties are tested and characterized. The PP sponges with a three-dimensional porous network structure show an exceedingly low density of >0.014 g/cm3, a high porosity of <98.77 %, and a high water contact angle range of 130.4-139.9°. Moreover, the PP sponges own a good absorption capacity of <47.61 g/g for different oil and solvents. In particular, the compressive modulus of the PP sponges is 33.59-201.21 kPa, which is higher than that of most other fiber-based porous materials, indicating that the PP sponges have better durability under the same force. The excellent comprehensive performance of the PP sponges demonstrates the method developed in this study has large application potential in the field of the recycle of waste PP melt-blown materials.


Subject(s)
COVID-19 , Polypropylenes , Humans , Polypropylenes/chemistry , Pandemics , Waste Products
3.
Mar Pollut Bull ; 181: 113883, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1914800

ABSTRACT

Face masks have been adopted as an essential measure to prevent transmission and spread of the virus infection during the pandemic of Covid-19. The present study evaluates the potential microfibers transfer from face masks to other recipients and the potential cross-contamination of samples by microfibers released from masks worn during the analysis of microlitter ingestion by fish. Results indicated that masks could easily transfer endogenous (originated from the mask tissue itself) and exogenous microfibers (with a different origin than the mask tissue itself) to other recipients (adhesive tape and air in our experiment). Exogenous fibers may be carried from everywhere and potentially released everywhere. Microfibers are also released into the air, driven by the airflow generated by breathing, and can be transferred to blanks and samples. Microfiber contamination by facial masks increases the risk of samples cross-contamination and raises concerns about the results reliability of the microlitter analysis on marine biota.


Subject(s)
COVID-19 , Animals , Biota , Fishes , Pandemics/prevention & control , Reproducibility of Results
4.
Environ Pollut ; 308: 119674, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-1905564

ABSTRACT

The widespread use of disposable face masks as a preventative strategy to address transmission of the SARS-CoV-2 virus has been a key environmental concern since the pandemic began. This has led to an unprecedented new form of contamination from improperly disposed masks, which liberates significant amounts of heavy metals and toxic chemicals in addition to volatile organic compounds (VOCs). Therefore, this study monitored the liberation of heavy metals, VOCs, and microfibers from submerged disposable face masks at different pH (4, 7 and 12), to simulate distinct environmental conditions. Lead (3.238% ppb), cadmium (0.672 ppb) and chromium (0.786 ppb) were found in the analyzed leachates. By pyrolysis, 2,4-dimethylhept-1-ene and 4-methylheptane were identified as the VOCs produced by the samples. The chemically degraded morphology in the FESEM images provided further evidence that toxic heavy metals and volatile organic compounds had been leached from the submerged face masks, with greater degradation observed in samples submerged at pH 7 and higher. The results are seen to communicate the comparable danger of passively degrading disposable face masks and the release of micro- or nanofibers into the marine environment. The toxicity of certain heavy metals and chemicals released from discarded face masks warrants better, more robust manufacturing protocols and increased public awareness for responsible disposal to reduce the adverse impact on ecology and human health.


Subject(s)
COVID-19 , Metals, Heavy , Volatile Organic Compounds , COVID-19/prevention & control , Humans , Masks , Metals, Heavy/toxicity , SARS-CoV-2 , Volatile Organic Compounds/toxicity
5.
Int J Environ Res Public Health ; 19(1)2021 12 28.
Article in English | MEDLINE | ID: covidwho-1580804

ABSTRACT

The research aims at washing processes as possible sources of microplastics, specifical microfibers in wastewater, and the behavior of the virus particles SARS-CoV-2 in wastewater after the washing process as well as their ability to sorb to the surface of microfibers, released from washing processes. The conclusions of the research point to the ability of the virus to attach to possible solid impurities such as textile fibers (microfibers) occurring in the sewer and to the ability of wash water to influence their possible occurrence in the sewer. The highest efficiency (more than 99%) of removal virus particles was after washing process, using liquid washing powder, and washing soda. These findings may gradually contribute to a better understanding of the behavior of the virus particles in the sewer.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Microplastics , Plastics , SARS-CoV-2 , Textiles , Wastewater , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 806(Pt 1): 150495, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1433807

ABSTRACT

From the onset of Covid-19 pandemic, the use of face masks has been adapted as one of the main measures to slow down the transmission of the SARS-CoV-2 virus worldwide. The inadequate handling and management of face masks lead to a massive dispersal in the environment, resulting in a new source of microfibers because of their breakdown and/or degradation. In addition, the laundering of reusable face masks of different polymeric composition can represent an additional sources of microfibers to natural ecosystems, but it was largely neglected. The present study explored the release of synthetic or natural microfibers from reusable and disposable face masks of five different fabrics when subjected to a cycle of laundering in a domestic washing machine. After a single wash, face masks released an average (± SE) of 284.94 ± 73.66 microfibers, independently of the fabrics. Focusing on the fabrics composing the face masks, polyurethane (541.33 ± 51.84 microfibers) and cotton-based (823.00 ± 112.53 microfibers) face masks released the highest amount of synthetic and natural microfibers, respectively. Considering the crucial role of face masks to counteract the pandemic and the increasing trend of their use, further studies represent a priority to estimate the contribution of face mask-derived microfibers to freshwater contamination.


Subject(s)
COVID-19 , Laundering , Ecosystem , Humans , Masks , Pandemics , SARS-CoV-2
7.
J Hazard Mater ; 419: 126507, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1284212

ABSTRACT

Wearing face masks is a fundamental prevention and control measure to limit the spread of COVID-19. The universal use and improper disposal of single-use face masks are raising serious concerns for their environmental impact, owing to the foregone contribution to plastic water pollution during and beyond the pandemic. This study aims to uncover the release of micro/nanoplastics generated from face mask nonwoven textiles once discarded in the aquatic environment. As assessed by microscopy and flow cytometry, the exposure to different levels of mechanical stress forces (from low to high shear stress intensities) was proved effective in breaking and fragmenting face mask fabrics into smaller debris, including macro-, micro-, and nano-plastics. Even at the low level of fabric deterioration following the first second of treatment, a single mask could release in water thousands of microplastic fibers and up to 108 submicrometric particles, mostly comprised in the nano-sized domain. By contributing to the current lack of knowledge regarding the potential environmental hazards posed by universal face masking, we provided novel quantitative data, through a suitable technological approach, on the release of micro/nanoplastics from single-use face masks that can threaten the aquatic ecosystems to which they finally end-up.


Subject(s)
COVID-19 , Masks , Ecosystem , Humans , Microplastics , Plastics , SARS-CoV-2
8.
ACS Appl Mater Interfaces ; 13(1): 155-163, 2021 Jan 13.
Article in English | MEDLINE | ID: covidwho-997777

ABSTRACT

A substantial increase in the risk of hospital-acquired infections (HAIs) has greatly impacted the global healthcare industry. Harmful pathogens adhere to a variety of surfaces and infect personnel on contact, thereby promoting transmission to new hosts. This is particularly worrisome in the case of antibiotic-resistant pathogens, which constitute a growing threat to human health worldwide and require new preventative routes of disinfection. In this study, we have incorporated different loading levels of a porphyrin photosensitizer capable of generating reactive singlet oxygen in the presence of O2 and visible light in a water-soluble, photo-cross-linkable polymer coating, which was subsequently deposited on polymer microfibers. Two different application methods are considered, and the morphological and chemical characteristics of these coated fibers are analyzed to detect the presence of the coating and photosensitizer. To discern the efficacy of the fibers against pathogenic bacteria, photodynamic inactivation has been performed on two different bacterial strains, Staphylococcus aureus and antibiotic-resistant Escherichia coli, with population reductions of >99.9999 and 99.6%, respectively, after exposure to visible light for 1 h. In response to the current COVID-19 pandemic, we also confirm that these coated fibers can inactivate a human common cold coronavirus serving as a surrogate for the SARS-CoV-2 virus.


Subject(s)
COVID-19/virology , Photosensitizing Agents/pharmacology , Polymers/pharmacology , COVID-19/prevention & control , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Humans , Iatrogenic Disease/prevention & control , Light , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microfibrils/chemistry , Pandemics , Photosensitizing Agents/chemistry , Polymers/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Singlet Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL